Technical Bulletin 1/2.

Product Information

Cytoplasmic and Nuclear Protein Extraction Kit

Catalog Number: VNC-001

Description:

This kit is designed for extracting intact nuclear proteins and native, non-denatured cytoplasmic proteins from various cell types or tissues, prepared for EMSA, ELISA, 1D and 2D electrophoresis, Western blotting, TF-TF interaction arrays and other protein/DNA assays.

Kit contains:

Components Quantity (50 extractions) Storage

Cytoplasmic Lysis Buffer (C207020, Blue sticker) 25.0 mL 2-8°C

Cytoplasmic Washing Buffer (C207030 Purple sticker) 15.0 mL 2-8°C

Detergents (D207050 Yellow cap) 1.5 mL 2-8°C

Nuclear Lysis Buffer (N207040, Green sticker) 2.5 mL 2-8°C

DTT, 1M (Dissolved in 0.1 ml ddH 2O) 1 vial -20°C

Protease/Phosphatase Inhibitors (I208052) 1 vial -20°C supplied in DMSO, contains optimized AEBSF, Aprotinin, E64, Leupeptin, Pepstatin A, Sodium fluoride, Sodium orthovanadate and Sodium pyrophosphate.

Protocol: (Keep all buffers and cell/tissue samples on ice)

*Prepare working reagents prior to proceeding.

For 10 Extractions: (10e7 cells or 50 mg tissues/Extraction)

 $Cytoplasmic\ Lysis\ Buffer\ (5ml)\ add\ 5.0ul\ (1M\ DTT\)\ and\ 100ul\ Protease/phosphatase\ Inhibitors\ {\scriptstyle (1208052)}$

Cytoplasmic Washing Buffer (3.0ml) add 2.0ul (1M DTT) and 30ul Protease/phosphatase Inhibitors (1208052)

Nuclear Lysis Buffer (0.5ml) add 0.5ul (1M DTT) and 20ul Protease/phosphatase Inhibitors (1208052)

1. Preparation of samples from culturing/frozen cells:

 Harvest cells (1x 10e7 cells) as usual and wash cells once with 1.0ml 1x ice-cold PBS/DPBS, centrifuge at 1,600 rpm for 8 minutes, aspirate liquids. Add 500ul cytoplasmic lysis buffer to resuspend cell pellet. Gently pipette up and down several times and incubate on ice for 10 minutes.

Preparation of samples from tissues:

- Weigh 10-50mg frozen/ fresh tissues and chop tissues into small pieces using a clean razor blade. Immediately transfer into a 2.0ml microcentrifuge tube contained <u>500ul cytoplasmic</u> <u>lysis buffer</u>. Vortex at mid-speed for 20 seconds and incubate on ice for 10 minutes. Tissues homogenization:
 - 1) Using a clean pre-chilled Teflon pestle homogenizer to homogenize the tissues for 10-20 strokes on ice, simply spin down the cells/tissue suspension and continue to homogenize tissues another 10-20 strokes.
 - 2) (**Alternative-1**): Prepare a syringe with a needle gauged between 23 and 25. Pass cells/tissues through needle about 20 times to disrupt the cell membrane and release the intact nuclei and organelles.
 - 3) (**Alternative-2**): Using a pre-chilled, clean Dounce homogenizer to homogenize the cells/tissues twice at speed 4 (moderate) speed for 20 seconds.
- 2. Add 30ul of detergents (vellow cap), vortex vigorously at highest speed for 10 seconds.

- 3. Centrifuge at 14,000 xg for 30 seconds at 4°C, immediately transfer the supernatant (cytoplasmic protein fractions) into a pre-chilled micocentrifuge tube.
- 4. Add <u>300ul cytoplasmic washing buffer to resuspend the pellet.</u> Centrifuge at 14,000 xg for 30 seconds at 4°C. Aspirate liquids. (The remained cytoplasmic fractions were washed out).
- 5. Resuspend the pellet in <u>50ul nuclear lysis buffer</u> and vortex vigorously for 10 seconds. Incubate suspension for 30 minutes on ice (vortex 10 seconds every 10 minutes).

Technical Bulletin 2/2.

- 6.Centrifuge at 14000xg for 10 minutes at 4°C. Transfer the supernatant (nuclear protein fractions) into a clean pre-chilled 1.5ml microcentrifuge tube.
- 7. Determine the protein concentration of cytoplasmic and nuclear with spectrometers, by Bradford or by BCA Assay. Store all the extracts aliquots at -80°C.

Flow Chart of Protein Extraction:

Cells (10e7)/ Tissues (50mg)

Add cytoplasmic lysis buffer (500ul) and detergents (30ul)

Spin 30 seconds

Supernatant-----Pellet

(Cytoplasmic proteins) (Nuclei)

Add washing buffer (300ul) Spin, 30 seconds

Pellet

(Nuclei)

Add nuclear lysis buffer (50ul) Incubate 30 minutes, Spin, 10 minutes

Supernatant

(Nuclear proteins)

Additional information:

- The nuclear protein markers: Lamin B (68kDa), LaminA/C (70 KDa), HDAC, Histone H1 (33KDa), Histon H4(43KDa);
- The cytoplasmic protein markers: GAPDH, anti-b-actin;
- The membrane protein markers: EGFR, Na+/K+ ATPase, anti-Sp1;
- The cytoskeleton protein markers: Vimentin.
- The lysosome protein markers: LAMP1/2/3. Capthepsin D.
- The peroxisome protein markers: PMP70.
- The Zmtech protease/phosphatase Inhibitors (I208052) supplied in DMSO, contains optimized AEBSF, Aprotinin, E64, Leupeptin, Pepstatin A, Sodium fluoride, Sodium Orthovanadate and Sodium pyrophosphate.

ZmTech Scientific Inc. endeavors to assist clients based on the highest level of customer service, competitive pricing and customer satisfaction. Our mission is: Convenience, Speed, Safety and Economy. Web: www.zmtechscience.com Fax: (514) 254 5356 Tel: (514) 702 7702